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OF ELASTIC 

The formulation of “elastically linear” problems of the nonlinear theory of magneto- 
elasticity is described. Problems in magnetoelasticity are understood to be problems of 

determining the magnetic field in a domain enclosing elastic bodies, and the strain state 

of these bodies under the effect of ponderomotive forces. Situations are examined when 

assumptions of linear elasticity theory are acceptable, but it is necessary to take account 

of the dependence of the field on the displacements. Two classes of problems encompassing, 
respectively, the equilibrium of ferromagnetic bodies and conductors with currents at dis- 
tances commensurate with the elastic displacements,are separated out. As illustrations,the 
bending of a ferromagnetic membrane and a string-strip by a magnet and the equilibrium 
of flexible conductors are examined. For a circular membrane the problem reduces to 
the case of the Emden-Fowler equation which has not been solved by study. It is shown 

that the system can have arbitrarily, and even infinitely, many equilibrium modes. The 

problem of the equilibrium of linear conductors reduced to determining the closed and 

self-intersecting trajectories of a point in a central force field whose magnitude is inver- 
sely proportional to the distance. Plane equilibrium modes are found. A number of other 

boundary value problems of the theory are formulated. 

1. Elastically linear problem: of nonlinear magnetoela,ticity 
theory, Let us consider a set of elastic bodies in a magnetic field. As usual in elec- 
trodynamics, let the field intensity of the foreign electromotive forces be considered 
known; it can be given as a function of either the space coordinates or of the elastic 
element. We also consider the permeability i.l and the conductivity o in the undeformed 
state to be known functions of the coordinates. Let us consider magnetically linear me- 

dia ( l ). let us take the density of the volume forces f as 

f=ji; H - 1/2Hz grad p (1.1) 
where j is the current density, B the induction, and H the magnetic field intensity. 
The density of the surface forces on surfaces of discontinuity of p and the density of the 
surface or line forces in cases when surface or line currents are examined are determined 
from (1.1) by passing to the limit. The remaining ponderomotive forces and strictive 

effects are not taken into account. Let us limit ourselves to equilibrium problems. It is 

necessary to find j, H and the vector of the elastic displacements u caused by the for- 
ces f. These vector fields must be determined jointly. Indeed, j and B depend on u 
since the displacements affect the distribution of in and the conductivity o in space, and 
u is determined by the forces f dependent on j and R. 

Let us consider the displacements small, and let us accept the assumptions of linear 
elasticity theory. Let us describe two situations when it is necessary to take account of 

-. _ 

l ) only ferromagnets can have values in needed later, and they are therefore considered 
as magnetically linear materials with high permeability. 
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the dependence of the field on the displacements even under these assumptions. The 

former occurs when the elastic system includes closely spaced ferromagnetic bodies, and 

the second when it contains conductors with currents in a strongly inhomogeneous field. 
Moreover, certain conditions should still be satisfied ; they will be enumerated below. 

Let there be bodies in space so that the spacings between some sections oftheir surfaces 
are small (in the sense indicated below). Let us assume that all three dimensions of these 
bodies are of the same order of magnitude, and both the dimensions of the closely dis- 
posed surface sections are commensurate with the characteristic dimension of the bodies. 

The closely packed sections should hence be of a “suitable” shape (so that the surfaces 

could “abut” each other in a domain of significant dimensions), for example, they may 

be plane. Let us also consider at least one of the closely-packed surface sections not to 

be fixed. 
The following notation is taken for the characteristic values : I are the dimensions 

of the bodies, A0 the spacing between the closely packed sections measured along the 
normal to one of the surfaces, a the elastic displacements, p1 and pO the permeabili- 

ties of the bodies and the surrounding inelastic medium. The ratio a / 1 is considered 

small; its magnitude is the criterion of smallness of the displacements. 
The following conditions should be satisfied in the situation described: A,, / 1 = 

= 0 (a / I), i. e. the displacements, including the relative displacements of the surfaces 

along their normals, are commensurate with the spacings between the bodies; p. / p1 = 
= 0 (A,, / Z), i. e. the ratio of the permeabilities of the ambient medium and the bodies 

is small (larger values of pIare also admissible when p,, / pI - ( A0 / Z)2 , etc. ) ; a 

permeability value of the order of pt is achieved at spacings of the order of A0 or less 
from the surfaces of the bodies ; the characteristic induction B, in the domain between 

abutting surfaces is one order greater than the induction B, in the ambient medium at 

spacings of the order of 1 from the surfaces of the bodies, i. e. B, /B, = 0 (A&). 
This latter assumption imposes a constraint on the shape of the bodies and the confi- 

guration of the currents. They should be such that the 9umber” of lines of induction which 
are closed on the path “point inside the body-space between abutting surfaces - another 

body - another space, etc. - original point inside the first body” would exceed the num- 
ber of lines traversing a distance of the order of G outside the bodies. The characteristic 
induction,B, within the bodies is commensurate with B,. 

Under the assumption mad&the induction B, and therefore the forces f as well, will 
depend essentially on the displacements. Indeed, let us examine two contours C, and C 
passing through the same elastic points, the former in undeformed, and the latter in 
deformed systems, and being closed just through the bodies and the narrow gaps between 
them. Let s, and S be surfaces based on c, and C,and n, and n their normals. From 
the relationships 

$HJC, =.[ j*n*dS,, 
G S* 

$HdC = 5 jndS 
c s (4.2) 

the approximate equalities follow 

Bo,Ao~o-’ + L&l-1 = I,, Bo @o + 4 PO-~?- B&I-~ = 1 (1.3) 
Here and henceforth the quantities with asterisk refer to the undeformed and without 

asterisk to the deformed states; I, I, are the characteristic total currents. Proceeding 
from the estimates taken for Ao, a, I, PO and pI,the order of variation in the induction 
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during deformation can now be estimated 

AB = B, - B,, N (a I AJB, (1.4) 

when the total current is unchanged. It is seen from (1.4) that AB / B,, = 0 (1). 
A change in current configuration also yields some contribution to AB but even if 

it is neglected, the magnetoelastlc problem will be “coupled” and nonlinear. However,if 
A, /I = 0 (1) or pa/ pi= 0 (l), and the currents “are diverse” at a spacing of the order of 
1 (see later), then the currents, field and forces f can be sought for the undeformed state. 

The problem then decomposes into a problem of stationary current distribution, a prob- 
lem of magnetostatics.and a problem of elasticity theory solved in sequence. The solu- 

tion is hence found to the accuracy of higher terms in a / I, which are discarded any- 
way in linear elasticity theory. 

In the case of magnetically nonlinear media, formulation of the problem is retained 
except that ~lmust be understood to be the characteristic value of dB / dH in the mate- 

rial. Moreover, the requirement that the zones where H is so great that dB / dH = 
= 0 (l&s) did not alter the distribution of the lines of induction described above must 

be satisfied. This will occur, say, if the sizes of these zones are of the order of A,,. 
As has been mentioned, 1 grad u 1 near the surfaces of the bodies should be sufficiently 

large. Hence, to the accuracy of the highest members in all the forces Hz grad p acting 

in these domains can be considered as a surface loading even if 1~ grows continuously in 
the body from p = u0 to p = 0 (ur). 

The problem can refer not only to a set of bodies, but also to one elastic body which 

should, however, have a specific outline. (For example, a ferromagnetic torus with a 
narrow cutout bounded by planes normal to the torus axis. The loading will be applied 

to the cutout boundaries). 
The following changes in the fundamental situation described above are admissible. 

Besides the case Bs / B, = 0 (A, / I) the case B, / B, = 0 (1) is also possible, but 

it should be obtained from the preceding by “superposition” of a field on the whole sys- 
tem, whose characteristic induction B, both near to and far from the bodies would be 

commensurate with the induction B, available earlier. (Currents of one order of mag- 

nitude greater than the initial currents are needed to produce this field). The case, how- 

ever, when B, / B, = 0 (1) and all the lines of induction traverse a path of the order 
of 2 outside the body is excluded. Also admitted is the case when B, > B, owing to 
the introduction of an additional field, almost all of whose lines of force are entirely 
within a single body. Finally, bodies with radically different dimensions in the three 

directions can be considered. Furthermore, only those cases are examined when a, 
A,, << b, where b is the least dimension of the closely packed surfaces commensurate 

with the “second” body dimension. But the third body dimension It can be on the order 
of a, for example, in rod flexure. Then another assumption ought to be made on the 

smallness of the ratio p0 / pi,l. e. consider that cl,, / pL1 = 0 (bh / Z2).etc.. where l is 
the greatest characteristic dimension of the body. 

Let us examine the second fundamental situation in which the forces depend on the 
displacements. It is here required that the loading be produced by the effect of a strongly 

inhomogeneous field on the current so that, for example, a 1 grad B I. d B. Let volume 
or surface currents flow in a body with a sufficiently smooth surface. Let points of the 
body be displaced by an amount of the order of a which is small compared with the 
body sizes. Then, in all space including the domain near the body surface, changes in 
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the field will be small compared with the initial values. It hence follows that the field 
should be produced by currents flowing either in a body, at least two of whose dimensions 

A, are commensmate with the displacements, or in a body with a strongly curved surface 

(having domains where one of the curvatures is k = 0 (1 / a)). The first case results 
in the problem of equilibrium of a conductor of a slender &d type either near another 
similar conductor, or near the surface of a ferromagnet. 

The formulation described above is sufficiently natural. Indeed, if it is required to 
deform an elastic system by forces f, tllen ferromagnets or conductors with currents should 

logically be placed at distances approximately equal to the required elastic dlsplace- 

merits. Values of Z/a comparable to the relative permeabilities prIpa of the ferromag- 

nets, or even one order less. are possible in the elastic domain. 

2. Equilibrium of frrromrgnetr. Nonlfa8rr boundary vrlur prob- 
1 e m B , Only the lowest terms in a 1 I are retained in formulating the equations of 
linear elasticity theory. It is hence natural to retain only the lowest terms in the deter- 
mination of j and B. Furthermore, some cases are examined when the field equations 
can be integrated in this approximation, and the ponderomotive forces can be expressed 

in terms of displacements. We will hence arrive at a nonlinear boundary value problem 
for just u. 

On determining the currents. Let us assume that the dependence of the 

conductivity on the deformation, the Hall currents, etc. can be neglected, and reasons 
for the origination of nonlinearities different from those mentioned in Sect. 1 are not 

taken into account (for example, the influence of displacements on currents owing to 
the change in reslstivity of the medium in the domain between closely packed surfaces). 
Let the foreign electric field intensity be given as a function of an elastic point. Then 

the current density can be determined in conformity with the relationship j (r + U (r))= 

= j, (r), where r is the coordinate vector of a point of a body in the undeformed state, 

u ls its displacement neglecting particularly changes in the orientation of j due to elas- 

tic rotations. The currents thereby turn out to be expressed in terms of the displacements. 
Moreover, the dependence on the displacements should be taken into account only for 

currents interacting with other nearby currents to which the distance changes substanti- 

ally during deformation (according to Sect. 1). For the remaining currents it can be 
assumed that j (r) = j, (r). 

Therefore, a magnetostatic problem is obtained to seek B , where the equations and 

boundary conditions depend on u in a known manner. For its solution in the problem of 
equilibrium of ferromagnets (see Sect. 5 for the equilibrium of closely packed conduc- 

tors with currents) and under the condition Bs ,’ B, = 0 (A,,/l) it can be considered 
that the field is localized within the bodies and in the gaps between the closely packed 

surfaces, i.e. B = 0 outside these domains. The field ln the gaps between the bodies 
can be found thus to the accuracy mentioned ln a number of cases. 

Let us consider a thin layer between pieces of surfaces o, and os with a given potential 

cp, (ii/r,), (ps (Iv’s), wherelvllis a point on o1 and &Is on ci%. Let two dimensions of the 
layer be mutually commensurate (let I denote the appropriate characteristic spacing), 

and the third dimension is the spacing between (TV and us (its characteristic value is deno- 
ted by A,) which is small compared to I. We consider the surfaces sufficiently smooth, 
and their curvatures of the order of 1 / l or less. Let n,denote the unit vector of the 
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normal to c~directed into the layer, and A, the length of its segment between o1 and n,. 
For all IIf1 the ratio A1 (M,) / 1 is on the order of A,, / 1. If the normal to o, passes 
through the points Ml and &?, on o1 and oZ and n2 is the unit vector of the normal to 
‘&directed outward from Jr,, then the angle between n, and n2 is of the order of A,, / 1; 
to this accuracy n1 and nsmay not be distinguished. Let 1 grad ‘pl.z 1 be “not large”, 

i.e. the characteristic values are 1 grad ‘pl,Z 1 = 0 (6~ / Z), where fiy: is the char- 
acteristic value of 1 cpl - cpz I. Then the solution of the Dirichlet problem (the values 

of ‘p outside aI, 0s are unessential) 

Acp = 0, cp = 91 on o,, cp = ‘p2 on 0, (?I) 

everywhere within the layer, except in domains of size 0 (A,,) near the edges is 

(2.2) 

Here a point within the layer, which lies on the normal to a, passing through 44, __ (TV 
and i?!, C: ‘J, is determined by the coordinates of the point -iM, and the distance g to 

a,; 0 < E < A,. If cp is the scalar magnetic potential, j ;=r 9 and p -= p. = CCES? 
within the layer, a, and o, are surfaces of discontinuity of p, then the field intensity in 

the layer 11, and the surface loading applied, say, to CQ 

(2.3) 

are found from (2.2) (terms of order p. / pI are naturally discarded in calculating the 

load according to (1.1)). These relationships can epen be utilized when ~1 and CT, have 

singularities of edge, tooth, etc. , type, arid A1 (kf,) is discontinuous. Both H, and g, are 
determined everywhere from (2.3) except in domains with dimensions 0 (A,,) near the 
edges and discontinuities. The contribution of these domains to q,can be ignored. The 
relationships (2.3) are generally inapplicable if the number of discontinuities is compa- 

rable to 1 / A,, (such systems are encountered in engineering). 
From the expression for the field energy in the layer 

(2.5) 

it follows that the forces q1 can be determined by variating just T/z’,,: a variation of the 

remaining part of the total field energy yields a contribution of the form (p,, / lll)ql. 
But the field energy in the substance W, is itself comparable to W, in the general case, 

as is seen from the estimates W, - A,,Z2B02 / p,, and W, - Z3B12 / p,. 
The following might be an illustration for the relationships obtained. Let ol, oZ be 

identical plane figures of area S and ‘02 - v1 = cor~st. Let us find the force Q1 attract- 

ing o1 and O? 

where B,, is the induction in the layer. This is the known approximate Maxwell formula. 

The field between the bodies is expressed by the relationships (2.2) and (2.3) in terms 
of the scalar potential on their surfaces and displacements. The potential however should 
be found from a single problem to determine the field between and within the bodies as 
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a function of the displacements. Possibilities for simplification may be present here ; 
let us examine some of them. 

In general, both the magnitudes and the directions of the vectors R within the bodies 
depend essentially on u. Cases are also possible when it is admissible to consider only 

the magnitudes, but not the directions of R , to vary in the material excepting, perhaps, 
in domains whose contribution to the field energy can be ignored. To do this it is requi- 

red that one of the dimensions of the bodies i considerably exceed the two other dimen- 

sions b and h. Although different situations are possible here; for example, depending 

on whether the orders of 1 or b should be considered as regards the dimension of closely 

packed pieces of surface, ln any case the length of a portion of the line of induction 

within the body will be comparable, for “almost all” lines, to I and can be found at once. 
Moreover, the distribution of B in “normal” cross sections can usually be determined suf- 
ficiently accurately in bodies of such shape. This permits relating u to (pz - cpl by 

using (1.2). Appending the relations obtained to the equations of elasticity theory, we 
obtain a nonlinear system ln the displacements and the scalar potential (see example in 

Sect. 3). 
Simpler than the others is the case when both dimensions of the closely packed sec- 

tions are on the order of b, and the length of segments of the lines of force in tne sub- 

stance is on the order of 1. Then to the accuracy accepted ‘pl, (p2 can be considered 
independent of M,, M, . We hence arrive at a boundary value problem for just u. 

However, values of the potentials of abutting surfaces should be determined during the 

sohltion; they depend on the displacements. Let us now assume that 1 diminishes in the 

system corresponding to this last case while the other dimensions are retained. When 1 

becomes commensurate with b, a system is obtained for which it should be considered 

that p = 00 within the body. The determination of the scalar potentials is hence sub- 

stantially simplified. 
Let us form the equilibrium equations of several specific systems. Let us initially 

assume TV = ~3 within the bodies, and then (in Sect. 3). let us discuss how to take account 
of the imperfection of a ferromagnet. 

First let us consider the problem of bending 
of a ferromagnetic membrane by an electromag- 

net. Let us consider all the lines of induction to 
be closed in conformity with Fig. 1 and to be 
enclosed by the same total current I. Since it 
was assumed p = DC on their whole length 

except in the gap between the magnet and the 

Fig. 1 
membrane, the shape of the magnetic circuit 

between the membrane and the abutting surface 
of the ferromagnet is unessential. It is assumed that this surface is plane and nondefor- 

mable, and its contour duplicates the membrane contour r’(or encloses it). The dlffer- 
ence between the scalar potentials of the membrane cp, and the adjoining surface will be 

‘~1 - w = --I. Let A0 denote the spacing between the membrane and the magnet surface 
in the equilibrium position, u the membrane deflection, and T the tension per unit 

length. In determining the loading in (2.3) it is necessary to take A, = A,,- u. Let US 

Set IJ= dAo$ x”=p01~/2TA$ and let us introduce dimensionless coordinates in the domain 
r’ occupied by the membrane,obtalned by multiplying the corresponding dimensional 
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coordinate by x. Referring the loading to the nondeformed membrane, as in linear elas- 
ticity theory, we obtain the equilibrium equation 

i 
Av+ \I -v)” =o (2.5) 

The boundary condition will be 14~ = 0; the Laplace operator and the curve I’ are 
given on planes of the dimensionless coordinates. The one-dimensional analog of (2.5) 

1 
ii L (f __)% =o 

describes the equilibrium of a ferromagnetic string-strip, i.e. a stretched tape whose 

width b is many times less than its length I but much greater than its deflection II. The 

dots in (2.6) denote differentiation with respect to v, D = v (T), z = XX; here z is the 
coordinate measured along the string, x = bpJV2T,A#, and TX is the tension. 

If the ferromagnet surface abutting the membrane or string is not plane, then in place 

of (2.5) and (2.6) we obtain, respectively, 

Av+ (&% u-.-i- (r-fv)P =o (2.7) 

where f = AlJAr is a known function of the point, Al+ the spacing between points of 
the membrane (string) and the magnet in the equilibrium position, and A0 is any constant. 

The equation for bending of a thin ferromagnetic plate is formed analogously 

i 
Mv- (I__2 =o 

Its one-dimensional analog 
vrv - 1 

(1 -v)” =O 

describes bending of a beam. For a nonplanar magnet surface these equations are trans- 
formed to a form analogous to (2.7). Equations for variable thickness plates and an 
inhomogeneous beam can also be written down. Hence, if the lower surface of the plate 

or beam is nonplanar, then both the first (elastic) and the second (magnetic) terms change 
in (2.8) and (2.9). In general, a loading of the form (2.3) can be applied to bodies of 

diverse shapes, which generates many nonlinear boundary value problems on the equilib- 

rium of perfect ferromagnetic elastic bodies. In cases when some given loading acts on 
the body in addition to electromagnetic forces, problems occur on the “interaction” 

between these two factors. Making the substitution vt = i - f -I- v in (2.7), we obtain 

Fig. 2 

I 

from which it follows that curvature of the magnet 

is equivalent, in a specific sense, to application of 

a given external loading. 

Equations of the type (2.5) - (2.9) can evidently 
be obtained from the variational principle IS (II - 
- WO) = 0, where Il is the potential energy. It is 
useful in stability investigations in particular. 

3. Bonding of a ferromagnetic #wing- 
Btrip, Bqullibrlum curve and it8 &tab!- 

lity. Let us examine a clamped string. The boundary conditions in dimensionless 
variables will be v (0) = v (xl) = 0. Equation (2.6) admits of the first integral 
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6’ + (i - v)-’ = cons& from which it follows that the integral curves on the v, d plane 

are symmetric relative to the v -axis (Fig. 2). 
Hence, the shape of the string should be symmetric with respect to the axis passing 

through its center ; the maximum displacemeut v, is achieved at the center. The con- 

stant in the first integral equals (1 - urn)+. Further integration taking 

t(k?-)“P= 

b m 

= -p/svm (1 - urn) - I/‘/n (1 - urn) (1 - v) (Urn - 4 + (3.1) 

For x2/2 < r < xl the dependence v (t) is determined by the equality v (r) = v (xl-t). 
The shape of the string is now found to the accuracy of the constant urn. To determine 

it, its equivalent relationship v (x1/2) = &. 

I is needed. Setting z = x1/2, v = urn in 
(3.1). we obtain 

xl = F (v,) E f/25,, (1 - v,,,) + 

Sfi Yj- (1 - v,)‘~* 1 n 
1+1/c 
i _ .1/G (3.2) 

The dependence of the maximum deflec- 

tion v, on the single dimensionless parame- 

ter xl is thereby determined. Constructing 
cI.4 a8 /. 2 the curve urn = urn (xl) (Fig. 3). called the 

Fig. 3 
equilibrium curve, we fiid that for one value 
of the parameter the string can have either 

two equilibrium modes, or one mode (the 
appropriate point on the equilibrium curve is called the limit point), or have no equilib- 
rium at all. It is remarkable that there exists a series of modes (upper branch) tending 

to an equilibrium mode of the string loaded by a concentrated force at the center as 
x -+ 0 rather than to the undeformed state. 

Let us investigate the stability of the equilibrium. Let us proceed as in [1], Ch. VIII, 

i.e. despite the fact that the number of degrees of freedom is infinite, we make the fol- 

lowing two assumptions. We will consider the equilibrium mode stable if it communi- 
cates a minimum in the class of functions v (T), 0 f ‘c f xl to the functional 

such that v (0) = u (xl) = 0 and V’ E Lz. Let us also take the Poiucark deduction on 
the shift of stability on the equilibrium curve, expounded in fl].Ch.VIII,p. 102, say. Let 
us find the second variation of V Xl 

6V = 1 f21 dz 
(1 - z)~ J (3.4) 
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Here 5 is a function from the mentioned class. We also have 

(3.5) 

for all 5. Let us examine the equilibrium of the lower branch, where v,,, = U for xl = 0. 

Hence, there exists a (xl), such that for 0 < xl < (xl), the following inequality is valid: 
1 x” 

[ 1 - Urn (xl) j” < 2 (xl)” 

For the same values of the parameter xl 

(3.6) 

(3.7) 

But it is known (see p], Ch. VII, p. 257, for example) that the right side of (3.7) is 
nonnegative for all 5 from the given class. Hence, 6’V > 0 for 0 < ~1 < (HI)* ; for 

these values of xl the equilibria of the lower branch are stable. Therefore, the whole 
lower branch is stable. Stability vanishes at the limit point ; the upper branch is unstable. 

The same deductions on stability are obtained if the stability of the equilibria adjoin- 
ing the undeformed state is investigated by seeking the frequencies of small oscillations 

around these equilibria in the form of power series in x. Physically, the stability of equi- 
librium sufficiently close to the undeformed state is evident. 

Now, let us mention two cases when the imperfection of the ferromagnet can be taken 
into account. Let a string and magnet be connected, according to Fig. 1, by a magnetic 
circuit of length I, > I with the permeability pl. Under the assumptions of Sect. 2, 

along the string cpz - cpl = q = const, but 9 # I; in the magnetic circuit B = B1 = 

= const. We have cp + B,l,Jp = I. The second relationship between cp and B,is obtained 
from the condition that the magnetic flux Q through the “lower” surface of the string 

equals the flux in the magnetic circuit. From (2.3) we find 

(3.8) 

Here S, is the cross section of the magnetic circuit, and u (x, q) is determined from 
(3.1) and (3.2), where it is necessary to set x = pob@/2T,Ao3. From the two equations 

in cp and B, obtained, they can generally be found. This-case corresponds to the esti- 

mate polpi = 0 (SiAollsIb); if this ratio is an order less, then cp and u can be taken at 
P1 = 00 and B, can be found from (3.8). If, however. PO//$ is an order higher, cp is 

found from (3. E) where it is necessary to set B, = IpJl,, and will be small compared 

with I. 

In the second case, the field in the string itself is taken into account but not in the 
rest of the ferromagnet. Then cpz - q1 = cp (z). According to Sect. 2, we consider 
B = BZ (2) in the string. 

Let SZ be the cross section of the string. We have (Fig. 1) 

(3.9) 

(3.10) 
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Here @ (5) is the magnetic flux through a part of the lower surface of the string 
included between the left end and the section with coordinate Z. By substituting (3.10) 

into (3.9) and adding the equation 
d’u 1 I+@? (2) 

T +T [&-u(z)]? =’ 
(3.11) 

we arrive at a system consisting of two equations, an integral one and a differential one, 
for the scalar potential cp (x) and the displacement u (2). Such a consideration corre- 

sponds to the estimate bo/pl = 0 ( Ao&/W). If this ratio is an order less, then cp and u 
can be considered equal to their values for ~1 = 00, and Be is determined from (3.10). 

If, however, k’o!pl is an order greater, then almost all the lines of force of the field will 

enter the string at its right end I = 1 and the derivative cp’(s, will be quite large in this 
domain, which contradicts the assumptions of Sect. 2. 

4. Equilibrium of a ferromagnetic membrane, Emden-Powler 
equation with a negative power of the unknown in ths nonlinear 
member, Let us examine the axisymmetric equilibrium of a circular membrane. In 

place of (2.5) we obtain the equation 

d’v 1 dv 1 
y@-fpd;,-j-o’=* (4.1) 

with the boundary conditions u (xR) = 0, - DC < u (0) < 1. Here u = v ip), P = w is 
a dimensionless radial coordinate, and R the membrane radius. After substituting w = 
=i - v we arrive at a variety of the Emden-Fowler equation 

d”W 1 dtu - _ zc-? = 0 
dp.2 + p dp 

The Emden-Fowler equation (see [3], Ch. VII, for example) has been studied only in 
cases when the power of the unknown in the nonlinear term is positive. Hence, a special 

investigation is required here. By substituting 
P = xRe-srl” ? W = (9/* xZR2fis ye5 (4.3) 

Eq. (4.2) is reduced to an “autonomous” second order system 

‘1’ = @? 6’ = 26 --++-Z (q’ = dql&, W = dbldt) (4.4) 

for which it is necessary to find a solution such that q (0) = (*/@R2)f’* and lim [q (a) e-‘1 
is bounded and positive as z -, x . Let us elucidate how the solution of the system 
(4.4) behaves as ‘c + 50; the behavior of the solution of (4.2) as p ---, 0 is thereby studied 

(this is a fundamental problem in the theory of the Emden-Fowler equation). 

Let us examine phase trajectories of the system (4.4) in that hxlf of the ~6 phase 
plane where 4 > 0. The system (4.4) has one singularity 6 = 0, 11 = 1. Setting q - 1 = 
= 5 and linearizing (4.4) near the singularity 

5’ = 6, 6’ = 26 - 3: + . . . (4.5) 

we find this point to be an unstable focus (Fig. 4). 
The curve 26 - 11 + ~-2 = 0 and on 0~ axis separate the half-plane under consid- 

eration into four domains. In 1 and 3 the derivative 

d-8 76-q+t_-2 
-= 

dq 6 (4.6) 

is positive, and 6 increases on the integral curves in these domains, as ‘1 grows; while 
6 decreases in domains 2 and 4 as 11 grows. Let us find the second derivative 
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d%/dq2 = -8-3 [(I + Q-3) Oz - 2 (tl - ?l-2) 6 + (11 - tj-2)21 (4.7) 

The quadratic trinominal in 6 in the square brackets in (4.7) has no real roots for 

q > 0 , and therefore, does not change sign. Hence, for 6 > 0 the integral curves are 

convex upward, and for 6 < 0 , downward. The Oq axis intersects the line 601) from 
the bottom up for n < 1 and from the top down for 11 > 1 , and has a vertical tangent. 

For 6 > 0 the following inequality is valid: 

do (Udq > d6,(rl)ldlI (4.8) 

where 6, (11) is determined by the linear system 

11’ = 6*, 8, = 28, - n (4.9) 

It hence follows that the integral curve 8 (11) of the system (4.4), starting at some point 

Q, IYO > U will lie, for T > u , above the integral curve of the system (4.9) starting 
from the same point, at least until 6 > 0 . 
But the line 6 = 11 is an integral curve of the 
system (4.9). Hence, integral curves of the 

system (4.4) intersect it from the bottom 

upward. The above permits pointing out the 
direction of the integral curves in various 

parts of q > 0 phase half-plane (arrows in 

Fig. 4). 
Now, let us examine the domain 1 < 11<.=, 

0 < 8 < tl and a segment of some line 
11 = rl* = const therein, on which U < ti < 

<q,. Some half-interval 10, cc) of this seg- 
ment is composed of points of integral curves 

Fig. 4 
which intersect the On axis from the top 

down as r increases further, The other half- 

interval (fl, n*j is filled with points of curves still intersecting the line 6 = 11 The 
points a and fi cannot belong to the mentioned set since otherwise a ” last” trajectory 

intersecting the 011 axis or the line 6 = q would be found. Hence, there exists a closed 
set of integral curves going to infinity between the lines 6 = r~ and 6 = 0; these curves 

are henceforth designated as “separating”. The half-branch of the separating curve going 

to infinity starting at some point should lie above the line 26 - tl + 11-z = U, hence, 
11 and 8 grow monotonically on this half-branch. Let us show that the separating curves 

have the straight line 6 = TV as their asymptote. Integrating the linear part of the system 

(4.4), we obtain 

‘1 (z) = nOeS + (80 - q0) te+ + i (T - 3) eTaT2 (3) ds 

(4.10) 

6 (z) - q (z) = (170 - qo) ef + { eTmaq” (4 ds 
0 

(4.11) 

wherei),,, tlo are the initial data. Let us take the point (Q, 80) on the part of the sepa- 
rating curve going to infinity, where rl and 6 are monotonic. Then 11 (r) > q~ for z > 0 , 
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and 5 

d (z) < 8~2’ + (60 - q0) Ozr f 
c 

(1 + z - G) e' 5q;ada = 6oeT + (80 - qo -i- $7 Te' 

; 

If the coefficient of Te’ in the last part of the relationship (4.11) is negative. 6 (t) 

starts to decrease for some value of z. Since this is impossible on the part of the sepa- 
rating curve under consideration, there is no point thereon where 6 - I) + 11-” < 0. 

Hence and from the condition 11 - 0 > 0 it follows that q - 6 + 0 as r -+ DC. There- 
fore the line 6 = tl is an asymptote for any separating curve. There is also obtained 

from (4.6) that dfi/dq _ 1 as t -+ ~1). 
Furthermore, let us show that there exists only one separating curve. Let us assume the 

opposite, and let us examine the “monotone” half-branches of two separating curves 

21, (qj and 192 (n) which go to infinity. Let 6r (90) > 0.2 (I~O), q~ > 1. The functions 
6, (?I), 6~ (11) exist for all I]> 710 on the considered portions of the integral cnrves. are 
positive and increase monotonically, tending asymptotically to the line 6 L- 11. Let us 

use the notation A6 = 6, - 6~. From (4.6) we have . . 

f A6 = (?-j - rl-‘) 
A6 

02 (82 + A@ 

Since the curves 6, (11) and 62 (n) have the same asymptote.Eq. (4.12) should admit 

a solution A6 (II) for A& (11~) = 6r (qo) -I% (qo) > 0 such that A2) exists and is positive 
for al: 11 > 110 and AI? > 0 as n --f CQ. But (4.12) has no such solution. Indeed, if A6 > 0, 
then d (AB)jdtl > 0 also, and a positive solution of (4.12) cannot decrease. Therefore, 
if IY (1;) is a separating curve, the integral curve passing above it for sufficiently large 

n cannot be separating curve. Therefore, even two separating curves don’t exist. 

The behavior of the integral curves on the whole 9 > 0 half-plane can now be 
described. Any curve, except the singular q s 1 and the separating curve making an 
infinite number of turns around the focus, intersects the line 8 = q and goes to infinity 
above this line “parallel” to it in the sense that litn (dtY/dq) = 1 as 11 + X. The sepa- 
rating curve going out of the focus will approach the line 6 = n asymptotically from 

below (Fig. 4). 
On the basis of the geometric properties established for the integral curves, let us elu- 

cidate how rapidly the functions 11 (T) and 6 (.t) increase as r --, W. The answer to this 

question is given by the following theorem: as r -) .W the lim [q (r) r-1 e-’ ] is finite 

and positive on all the integral curves in the 11 > 0 half-plane except the singular solu- 

tion “‘1 = 1 and the separating curve; a finite and positive lim [q (7) e-‘I exists on the 
separating curve; the properties of d (5) are the same. Let us examine two solutions 

111 (r) and 113 (r) of the system (4.4) with the initial conditions 111,~ (0) = I~I~,:~, 
titl,? (6) = @IOCO such that the points (the, 6ro) and (~0, @20) lie on one integral curve. 
Let the passage from the former to the latter be performed in an interval ‘cl?, i.e. 
111 (t12) = 11-0, 6, (Q:) = $0; 7,; > 0 if this passage corresponds to the rise in ‘G and 
~2 < o if it corresponds to a decrease. We have 

‘12 (r) = 11 (Z + nz), lim [f (z) ‘11 (z)] = lim 
5-x3 [ -c’oo 

f @&,z1.) ] [ liij (z) '12 (T)] (4.23) 

under the conditions that the mentioned limits exist. Let us take an integral curve dis- 
tinct from the separating curve, and let us select the origin of reference -. at a point 
where 6 > rb Since n (7) increases monotonically for r > 0 , on the basis of (4.10) we 

can write 
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60 - 110 < q (7) T-‘ewT < 60 - 11~ -I- I~~,-c-~ -t ~-2 [i - ~-1 -+ 2-1 e-T] (4.14) 

The first of these inequalities is evident, the second is obtained analogously to (4.11). 
It hence follows that the function r) (z) T- e 1 (-” has an upper and lower bound as T ---) w 
Let us evaluate the derivative 

The function in the square brackets in the right side of (4.15) is monotonically increas- 
ing. and therefore, does not change sign for sufficiently large T. Hence. the function 

q (r) r-‘eBT is monotone at infinity, and as a function monotone and bounded on both sides 
must have a limit as T - 0~. For different 710, 60 the values of this limit are connected 
by means of the relationship 

lim ]rh (t) t-re-‘] = exp (-T12) lim [tI2 (t) r-l~-~] 

It is hence seen that the values of the limit are always positive. From the relationship 

s(r) - 11 (T) <(eO - 11~ + qo2) e' - 110+. 6 (T) -- 11 (T) > 0 for z + w (‘1.16) 

there results that 
lim [(6 - n) 7-1e--r] = 0, lim [6 (a) r-l e-‘1 

exists and 
lim [6 (.t) 7-l e-‘1 = lim [+q (r) r-le-‘] 

Now, let us consider the separating curve. Let us use the identity 
7 

rl W e-T = qo exp c [?I’ (5) - n (5)] d5 
q (6) 

(4.17) 
il 

It hence follows that if lim [n (r) e-‘1 exists, the integral in the right side of the rela- 
tionship CC 

lim [q (r) e (4.18) 
-XX? 

Tl=v”exP\ bw-w,l-gj- 
b 

converges, and conversely, if the integral converges, the limit exists. Let us show conver- 

gence of the integral. Differentiating (4.4), we obtain for r~ > I 
. . . 

‘1 z 6” zzz 6 - 2 (n - 6) (1 - q-3) > 6 - 2 (11 - 6) (G.19) 

Let us select the origin of reference r so that 

%>I, ~~(O)>o,6o--((Ilo--o)>o 

and the functions 11, 6 would grow monotonically as r > 0 ; as is seen from the preced- 
ing, such a choice is possible on the separating curve. The inequality (4.19) then yields 

6” > 0 for z > 0. Further, we find 

6 (7) -i; W’ (5) d5 + 6’ (0) > 6’ (0) 

b 

(4.20) 

This latter inequality shows that the integral of s-l-1 (t) converges in (0, W) . But since 
(“rl - rl’) = (11 - 6) -+ 0 as z -, oc, integral in (4.18) also converges. Therefore, on the 
separating curve there exists 
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Evidently 

lim [rl (r) e”] and 0 < lim ]r~ (r) e-‘1 < qo 

lim [6 (r) e-‘1 = lim[n (r) e-‘J 

Values of the limits for different initial conditions are connected by the relationships 

lim ]jh (7) e-‘I = exp (-al?) lim [112 (r)e-‘1, 71~ (rr2) = q2 (0) 

Let us turn to the initial boundary value problem. As has been mentioned, one of the 
boundary conditions requires that 0 < lim [r~ (+) e -‘] < \o. Hence, the desired function 

TV (r) must be such that q (t), 6 (t) would yield a parameteric representation of the sepa- 

rating curve. The measurement of T on this curve is given by the second condition 
rl (0) = ?I0 = (9/( +R2)-“3. Therefore, for each point of intersection of the line ‘1 =const= 

= (9/& x~fiz)-‘~~ with the separating curve there is a function n (.c) with the requisite pro- 
perties, and the values of q (T) for 0 Q t < ix3 determine the equilibrium mode according 

to (4.3). 
The functions q (T) and IY (T) utilized later correspond to the separating curve. Evalu- 

ating the derivative d!u jdp = (3/,xR)-“” (q - 6) e”‘> 0 (4.21) 

by using (4.3), we find that w grows, and the deflection c decreases as p increases from 
zero to xl<. It has been established earlier that 9 - 6 < 11-z on the monotone half- 

branch of the separating curve; hence 0 < (11 _ 0) ed’ < [rle-r]-~. It is thereby shown 
that the function (n - 6) ezr is bounded at infinity, and therefore, (11 - 6) eT ' + 0 as 

r + x, or p + 0, i. e. at the center the membrane has a tangent plane parallel to the 
plane of the contour. 

Let u m denote the deflection at the center. From (4.3) we have 

?J m = 1 - U’m = 1 - no’ lim [n (‘c) e8 ] (4.22) 
7+X 

Let us construct the equilibrium curve U, = L’~ (XX). The number of solutions is hence 

also determined. Let us examine equilibria close to the undeformable state. We have 

lim (nil lim [q (Z) e-‘1) I= 
%03.x) r-+X 

co 

= lim esp 
+1,-L30 { \ ]ql’ (r + rro) - th (f + rlo)] q;’ (Z + zlo) dt} = i (4.23) 

where q1 (z) is a function with any fixed initial value, and th (no) =qo. Hence urn - 0 

as tlo + x) or xR + 0, as should be for equilibria of this series. 

Let rl*f, i = 1, 2, . . . denote points of intersection of the separating curve with the 
On axis; their numbering corresponds to motion along the curve as ‘t decreases. Let us 

consider two functions rlr (t) and 112 (T) with initial values on that half-branch of the 
separating curve where n and 6 are monotone. 

Let 
111 (0) = 9”-0 > nr (0) = Ill09 Q (m) = qzo 

Two values of the parameter (xR)z < (xR), correspond to solutions of n1 (t), 112 (t) . 
By going from '1~0 to I~O along the monotone half-branch where 0 < 6 < 9, we obtain 

Hence, and from (4.13) 

(4.24) 
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It follows from the form of the separating curve that for sufficiently small xR (or large 

rlo) it has one and only one point of intersection with the line q = 11~. Hence, for small 
values of the parameter there exists a unique equilibrium mode (in contrast to the string, 

Fig. 3). An equilibrium series which exist for 

0 < xR < (xR),l = 2/sq;f” 

is started by the set of these modes which adjoin the undeformed state according to(4.23). 

The inequalities (4.25) show that the maximum deflection u,,, for equilibria of this 
series increases monotonically from zero to some u m*l as xR increases continuously 
from zero fo (xR),l . Let us evaluate the derivative _ 

da, dqo dv, 
--- - -_-- 

d (xR) - d (xR) dql, 
Tl”6’2 

dT 

I 
= 

0 

Here 111 (t) and ~0 are introduced as in (4.23). From the inequality 11 - 6 < rl-” there 

follows du,,,/d (r.R) = 0 for xR = 0. For xR = 0 the equilibrium curve has a horizontal, 
and for xR = (xR),l a vertical tangent. Equilibrium is impossible for xR > (xR),l . 

Equilibria of the mentioned series are unique only for xR < (xR)~~. For (xR),,l < 
( xR < (xR),~ the line 9 = q. (xR) , in addition to the monotone half-branch, intersects 
the lower curl of the separating curve connecting the points q*l and q,?.This yields a 
new segment of the equilibrium curve. Let us consider two functions q1 (T) and ~~ (z) 
with the initial values I~O > ~10 on the lower curl. Passage from the point with q = Iho 

to the point with q = q20 now corresponds to a decrease in T, and if ql @PI) = ~0. then 

r12 < 0. Hence wml = ~20~10-1w,Z exp (-Tu) > Wm2, L’rnl < J&n? 

i. e. the maximum deflection for equilibria of this series decreases as the parameter 

increases. Here, in particular, any 

Fig. 5 

%I > urn+ At the extreme points of this segment of 

the equilibrium curve (xR)*~, (xR),~ the tangents are 
vertical. Since the dependence urn (xR) is continuous, 

then for (xR),l the two considered branches of the 
equilibrium curve join, and (xR),l corresponds to the 

limit point. 
By the same means it is shown that still another 

ascending branch of the equilibrium curve lies be- 

tween (xR)*~, (xR)*~ , i. e. where V, increases as xR 

grows, a descending branch lies between (xR),a, xR)*s, 

etc., and all the values of (xR)*i correspond to limit 
points. We hence obtain an equilibrium curve of a 
rare kind, shown in Fig. 5, where xl = xR. 

The equilibrium curve as an infinite number of 

branches corresponding to the infinite number of curls of the separating curve, and inter- 
sects the line xR = V3, an infinite number of times, approaching the point xR = 2/~, 

VI?% = 1. This point correponds to the singular solution 11 G 1 or u (P) = 1 - @p/2)““; it 
can be found at once from (4.1) if a solution of the form v = 1 - Cpa is sought, where 
C, a = const. The number of solutions which the boundary value problem considered 
admits for the given value of the parameter is the following: if xR > (xR),l, there are 
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no solutions; if xR < (xR),~ and also for xR = (X&I there is one solution ; if (~R),s< 
< xR < (xR)+ or xR = (xR),z there are two solutions.etc.; there are ranges of variation 
of xR where exactly n solutions exist ( IZ is an integer); for xR = O/S there is a counta- 
ble set of solutions. 

It is easy to show that the equilibria close to the undeformed state are stable. As in 

Sect. 3, we hence deduce that all the ascending branches of the equilibrium curve cor- 
respohd to stable modes, and the descending branches to unstable modes. However, this 

deduction is valid only under the condition that nonaxisymmetric equilibrium modes 
either do not exist, or their branch does not intersect the branch of axisymmetric modes. 

These facts have not been proved. Attention is turned to the essential distinctions between 
the two- and one-dimensional cases, the membrane and the string. They are apparently 

connected with the fact that the membrane, ln contrast to the string, cannot bear con- 

centrated forces. 

6. Equilibrium of elrrtio oonductora. Let us consider the equilibrium 
of two thin conductors over which current flows according to Sect. 1. Let us consider the 

conductors to interact on a section of considerable length, where the spacings between 

them are commensurate with the displacements, and small in comparison to the length 
and radii of curvature of the current lines. The conductors will then be “approximately” 

parallel on the mentioned section. The cross-sectional dimensions are assumed to be of 
the same order as the displacement (for a rod, for example), or less (as for a string). Let 
us assume u = PO in the whole space. 

We shall first examine an auxiliary problem. Let be given a linear conductor and a 
point M between which the spacing ~0 = 1 r. 1 is small, The field intensity at M is 

where I is the current, z is the unit vector of the tangent in the current direction, r is 

a vector connecting M with a point on the conductor. Let us measure s so that 

r (4 = r0, % (S) = To for s = 0 

--I, < s d 1 - I,, r (-II) = r (1 - II) 
We have l-1, 

H(M)=&- 
s 

To x r0 + . . . 

_,, (709 + s2 + . . .p ds 
=&bo+tSH, b,,==$ (5.2) 

The addition 6H corresponding to the members not written down in the integrand is 
such that ro @HI -, Q as ro -+ CJ. Hence, we shall discard it in such cases, i. e. we evalu- 

ate H at points near the conductors by replacing the closed curvilinear conductor by an 
infinite straight conductor directed along T,-, and at a distance ro away. However, the 
accuracy of the result will be lower than in Sects. 2, 3 since I6H 1 generally contains 
terms of the form Ik In (Z/q,), where k is the curvature. 

Let us evaluate the load acting on the conductors. Assuming the cross section to vary 
sufficiently slowly with length, we can ignore the vectors j being nonparallel in the 
conductor cross section. In “almost parallel” conductors the plane perpendicular to the 
vectors j will be “almost” perpendicular in one conductor, to the vectors j in the other 
conductor (a difference of an order inthe ratio of the spacings between the conductors 
and their length). Hence, rotation of the cross sections need not be taken into account 
in evaluating the load in the deformed state. Let us draw a plane perpendicular to the 
currents, and let a,, o2 denote the sections being formed, and M, N points in u1 and 6~. 
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With the accuracy accepted, let us find the field intensity produced by currents of the 
second conductor in the first conductor 

H(M)& c j W) x r P. NJ dF 

.Jz, r (M, N) = iiih . ” r2(M, N) 
on 

(5.3) 

The interaction between currents flowing in the same conductor also causes some 
deformations, however, its influence on bending need not be taken into account. The vo- 

lume forces produced by the field (5.3) in the first conductor are 

IJo jW~x[j(N)xr(M,N)l TP 
-_L 

f (Ml - 2x s rZW, NJ 
dsz = 2~ s i Of) i (4 r (MS 4 daz 

r2 (M, N) 
(5 4) 

a 02 

where r=- i if the vectors j (M) and j (N) are parallel, and ‘r = i if they are anti- 
parallel. 

Only the linear loading q determined by integrating f (M) over the cross section 

w 
‘I’-fiy 

iWf)iWrW, N) d5d 

r"(M, N) 2 51 

61 c2 

(5.5) 

is essential in the approximate theory of bending. 
The forces f (hf) produce distributed bending moments and torques also, but their sum 

in a segment of a length commesurate to the length of the conductor is on the order of 

fro31 while the order of the bending moment due to the loading q is fro2P; the distri- 

buted moments need not be taken into account. 
For a constant cross section with uniform current distribution the loading is a function 

of only the displacements in P, but in contrast to (2.9), its form depends on the shape of 
the cross section. 

In order to obtain the equilibrium equation, the appropriate equations of elasticity 
theory should be written down, and the loading therein should be expressed in terms of 
the displacements according to (5.5). Let us form these equations for the interaction of 

two initially parallel strings (Fig. 6). whose cross sections have negligibly small dimen- 

sions compared with the displacements and the initial spacing J\“. We have from (5.5) 

Here I,, I? are currents, ur the displacement of points of the first and second strings, 

respectively, il: irI the unit vectors of the 

p-.-- 

‘w< ’ 

axes o!J and OS, where the vector is is direc- 
ted downward, and the vector i3 perpendicu- 
lar to the plane .I’?/. Combining equations 
(5_6),we find ul”_+ui” --=6. 

From the boundary conditions u1 (0) =: 

zs Fig. 6 
z Il2 (0) = 0, u1 (1) = u.: (1) -: 0 it now fol- 

lows : 
,,r E -- II? 

Let us introduce the notation 
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Here u is the dimensionless distance to the plane of symmetry. E~m~aling the vari- 
able ue in (5.6), taking projections on the axes and passing to dimensionless coordinates, 
we obtain -- u” - r -2 u ; W” - 0, w” - r n’: &.L = 0 tn. &) (5.7) 

Equations (5.7) agree with the equations of motion of a material point in a central 
force field whose magnitude is inversely proportional to the distance. Motion OCCUR in 

a plane where u, w are Cartesian coordinates, and the center of attraction or repulsion 

is at the origin. The projection of the string on this plane will be an orbit. It is here 
required to find the trajectory which starting at the point u = 1, w = 0 for ‘t = 0 will 

again arrive to the same point for z = xt . 
For an attracting string y = 1, to which correspond motions subjected to repulsive 

forces. Evidently closed or self-intersecting trajectories here do not exist. Hence, a body 
can return to the initial position only for a motion along a line passing through the cen- 
ter under the condition that its velocity was initially directed towards the center. Only 

these motions can indeed correspond to solutions of the boundary value problem under 

consideration, Since the initial point u = 1, w = 6 lies on the axis OU passing through 
the center, then w = 0. The equation now obtained for u is integrated and yields 

‘pl (0) 

z= Vz:(1-z$J \ 
1 

exp zVz, O<,<zf%-ZJ- (5.6) 
Q%) 

[pr (v) = [In (1 - u) -- In (1 - ~,)l”~, u = 2v1/A0 = 1 - u 

Here Y is the dimensionless displacement, urn < 1 is the maximum value achieved 

at the middle of the string. For 0 < z < x1/2 the displacement v increases monotoni- 

cally from zero to u,..The relationship (5.8) and the equality u (z) E u (xl - z) define 
the equilibrium mode to the accuracy of the single constant v,,,. To determine it an 

equation analogous to (3.2) is obtained : 
43 fv,f 

Xl==2 y’Z(i--vv,) 
c 

exp zrdz (5.9) 
. 
0 

where Jtl (v,,,) = [--In (1 - u,)]“‘. This yields an equilibrium curve similar to that given 
in Fig. 3 ; the discussion on stability is also conserved. 

The case y = --1 corresponding to attraction to the center or repulsion of the string 
is substantially more complex. Here we find plane equilibrium modes to which motions 
along a iine passing through the oentei correspond. 

For an initial velocity directed from the center, the body will first move from the ten- 

ter, then towards the center, and return to the initial position (the botiy cannot go to infi- 

nity without returning since the inequality h - In u > 0 should be satisfied, where h is 

constant energy). The solution of the original boundary value problem in which w 5 0 
can correspond to such motion (from the beginning of recession to return), Integrating 
the equation obtained for u, we find 

Wl (at 

t= V’z(i-rJ*) 
s 

exp (- 2”) f&z, O<V& (5.10) 
f4r 601 

a¶ (o*l 

xl=2 JQ(l -v& 
s 

exp (- 2s) dz (5.fi) 
-0 
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‘pz (2’) = [ln (1 - zim) - In fl - 2))1”*, qz f7~J = [ln (1 - P~)]“~ (cont. ) 

Here vn is the maximum displacement in absolute value reached at the middle of the 

string. In this case v < 0 for all r # 0, and v (7) decreases monotonically from zero to 
urn for 9 < 7 < xEi2. The series of equilibrium modes obtained exists for all xl; the depend- 
ence between xl and v, for it is mutually single-valued. This series is a continuation 
of (5.9) in the parameter yxl, however this is insufficient for a judgement of the stabi- 

lity since the stability can vanish upon a series of nonplanar modes branching off from it. 

A group of rectilinear motions accompanied by collisions of the center also corresponds 

to formal solutions of the boundary value problem. Let the initial velocity be directed 

to the center. In subsequent motion the body will descend to the center, having an infi- 
nite velocity here. Considering such motion to be the limit of a sequence of motions in 

which the body envelops the center on ever more narrow trajectories, we find that the 

body returns to the initial point after impact with the previous but oppositely directed 
velocity. A symmetric equilibrium mode with a cusp at the center of the string corre- 

sponds to this motion. Here v > 0 for r # 0, and v(?cE/2) = 1, u’(xli2) = 0~. 
Hence, such solutions contradict the assumption of smallness of the slopes of the string, 

and can be considered only as formal solutions. At the same time they are of interest 
for two reasons. Firstly, for a sufficiently long string, equilibrium modes similar to those 

given are possible everywhere except in a domain near the middle. Secondly, nonplanar 

modes branch off from these modes. where initial solutions near the bifurcation points 
must be known in order to investigate their stability. 

Integrating (5.7) for w E 0 and u-0 < 0 we find the connection between xl (the time 
of motion) and u’,, CT 

xi= Y’Zexp (i&0.2/2) \ exp (- ~2) d3 (5.12) 

Ill;;?< 

A corresponding sequence of modes exists for 0 < xl < I/z. It splits into three 
sequences for xl = y’n3 . 

One of these corresponds to the following motion: recession from the center, return to 

the initial point, incidence on the center, and again return to the initial position. These 
modes are nonsymmetric. 

Modes of the second sequence are obtained from modes of the first by a mirror trans- 

formation from the middle, and correspond to incidence on the center, return, recession, 
and again return. 

The third sequence contains symmetric modes. Recession from the center, return, inci- 

dence, return, again recession, and a final return corresponds to it. 
These series of modes exist for all xE > l/n/2. For xl = J%? there is possible 

motion when the body having started to move at a zero initial velocity collides twice 
with the center. The corresponding mode for xl > f% bifurcates into four new sequen- 
ces of modes. For xl = 3J%?? four more branches are generated, etc. The number of 
such branches is infinite. 

For xl -t 0 the sequence of modes with a cusp joins the upper half-branch of the 
sequence (5.9), however their limit modes differ in that the repeWing strings interlace 
(the “upper” string passes under the “lower” at the cusp point). This latter is understand- 

able since motion with a collision is the limit case of motions enveloping the center, 
and itshouldbe considered that a value u = -0 is reached upon impact. i.e. the body 
“sets” behind the center. 
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Nonplanar modes cannot be considered here. Let us just note that they are known to 

exist. Thus modes corresponding to a circular orbit are found by elementary means. 

Hence u = co9 r, w = f sin r, ~1 = 2n, 4n, etc., and the form of the string is a helical 
line having n curls for xl = 2na. Such modes exist in pairs: as right-hand and left-hand 
spirals, which corresponds to two directions of body rotation around the center. Seeking 
the remaining modes is substantially more complex than determining the periodic mo- 

tions in the Newtonian potential case, for example. This is seen at least from the fact 
that an unrealizable quadrature will replace the equations of the conic sections. 
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PROPAGATION OF A SHOCK WAVE IN A CHANNEL 

WHEN SHOCK-COMPRESSED QAS INTERACTS WITH 

A NONHOMOGENEOUS MAGNETIC FIELD 
PMM Vol. 34, W4, 1970. pp. 672-684 

A. 9. VATAZHIN 

(Receivei”g%?30, 1970) 

Unsteady flow of a conducting gas under shock wave conditions in channels of various 
magnetohydrodynamic devices was investigated in several recent papers (see for exam- 

ple fl, 23). Most of them assume that the electrical current distribution in the gas behind 
the shock wave is one-dimensional, and that it is controlled by the conditions of current 
closure in the external electrical circuit that connects the electrodes at the channel 

walls. 
However, in real channels there are always regions where the magnetic field is nonho- 

mogeneous and where the channel walls are nonconducting. As a rule, these regions 

coincide with the end zones of the external magnetic field. Behind the shock wave pas- 
sing through the end zones in the gas there are closed electrical currents whose intensity 
depends on the position of the shock front. These two-dimensional currents interact with 
the magnetic field and cause perturbations which catch up with the shock wave and 

change its velocity. 
Terminal effects in steady magnetohydrodynamic flows have been investigated for a 

long time (see for example [3]) but their influence on the unteady gas flow has not yet 

been solved definitely. Among the papers devoted to this subject matter are two exper- 
imental studies [4. S] which indicate that a substantial change occurs in the velocity of 
the plasma front in nonhomogeneous magnetic field, and that this effect is related to the 

emergence of closed-current zones in the plasma. 


